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Abstract
We study the transport properties for a Luttinger liquid (LL) quantum wire in
the presence of both Rashba spin–orbit coupling (SOC) and a weak external
in-plane magnetic field. The bosonized Hamiltonian of the system with an
externally applied longitudinal electric field is established. Then the equations
of motion for the bosonic phase fields are solved in Fourier space, with
which both the charge and spin conductivities for the system are calculated
analytically, based on linear response theory. Generally, the ac conductivity is
an oscillation function of the strengths of electron–electron interaction, Rashba
SOC and magnetic field, as well as the driving frequency and the measurement
position in the wire. Through analysis with some examples it is demonstrated
that the modification of the conductivity due to electron–electron interactions is
more remarkable than that due to SOC, while the effects of SOC and Zeeman
splitting on the conductivity are very similar. The spin-polarized conductivities
for the system in the absence of Zeeman effect or SOC are also discussed. The
ratio of the spin-polarized conductivities σ↑/σ↓ is dependent on the electron–
electron interactions for a system without SOC, while it is independent of the
electron–electron interactions for a system without Zeeman splitting.

1. Introduction

The physics of one-dimensional (1D) systems of strongly correlated particles has become a
very interesting subject because of the simplicity of the models and the attainment of the truly
1D systems due to breakthroughs in material technology. From the theoretical point of view, the
Luttinger liquid (LL) model is appropriate for describing the transport properties of 1D systems
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with electron–electron interactions [1]. The LL model is of fundamental importance because
it is one of very few strongly correlated ‘non-Fermi liquid’ systems that can be analysed in
any detail. The model does not attempt a complete description of electrons in a 1D metal but
rather is confined to the vicinity of the Fermi surface. One of the key features of the LL model
is the spin-charge separation: the low-energy excitations are not quasiparticles with charge e
and spin h̄/2 together but collective modes of spin and charge excitation separately. Therefore,
quantum transport in LL systems has attracted a great deal of interest since the experimental
realization of the narrow quantum wire formed in semiconductor heterostructures [2] and the
carbon nanotube [3], as well as the edge states of the fractional quantum Hall liquid [4]. We
will use the first one as our physical subject in this work.

Spintronics is a multidisciplinary field whose central theme is the active manipulation of
spin degrees of freedom in solid-state systems. It is believed to be a promising candidate for
future information technology [5]. There are two physical mechanisms which can be used
to influence the dynamics of the electron spin in normal conductors, i.e., spin–orbit coupling
(SOC) and Zeeman splitting. In layered semiconductors devices, the two predominant types
of SOC are Dresselhaus SOC [6] and Rashba SOC [7]. The former arises from the breaking
of inversion symmetry by the inherent asymmetry of the atomic arrangement in the structure
and is not very amenable to external manipulation. The latter, on the other hand, arises from
band bending at the interfaces between semiconductor layers and/or any external electric fields
applied to the device. Unlike Dresselhaus SOC, the strength of the Rashba SOC can be partially
controlled by application of an external electric field perpendicular to the two-dimensional
electron gas (2DEG) plane [8]. In many of the proposed spintronics device structures the spin
manipulation relies on the Rashba SOC, and as such, only the Rashba SOC will be considered
in our work.

In recent few years, there have been tremendous published research works of the SOC
effects on the III–V type and II–VI type nonmagnetic semiconductor heterostructures for
the purpose of spintronics devices. But there have been only few works [9–15] concerning
electron–electron interactions in these spintronic systems. The early theoretical studies [9]
demonstrated that the influence of the Zeeman splitting for an LL quantum wire is the breaking
of spin-charge separation, where the ratio of the spin-up and spin-down conductivities in a
dirty system diverges at low temperatures due to the electron correlation and results in a spin-
polarized current. Further studies [10–12] have also shown that the effect of Rashba SOC
for the LL wire is that the spin degeneracy is lifted for k �= 0 and each branch loses its
vertical symmetry axis, i.e., different directions of motion have different Fermi velocities.
Moreover, Coulomb corrections to the extrinsic spin Hall effect of a 2DEG has also been
studied recently [13]. In methodology, a bosonization theory including a Rashba SOC [10]
or a Zeeman splitting [9] has been constructed. A further question arising naturally is what will
happen if both the SOC and Zeeman splitting are considered simultaneously. This motivation
has led to the studies [14, 15] on the combined presence of a Rashba SOC and a Zeeman effect
in an interacting quantum wire. In these works, the study on a Coulomb long-ranged electron
interaction quantum wire [15] in the combined presence of a Rashba SOC and a Zeeman
splitting using the perturbative renormalization group treatment has indicated the generation
of a spin pseudogap and the propagation of a well-defined spin-oriented current, and on an LL
quantum wire [14] by the bosonization technique has demonstrated that the tunnelling current
may deviate from a simple power law such as that in an ordinary LL wire.

On the other hand, however, the pure LL quantum wire without SOC and Zeeman splitting
has been extensively investigated in the last decade. The ac response of an 1D interacting
system has been studied [16–18] previously in the framework of the LL model with or without
impurity. Moreover, it is known that the dc limit of conductance through a clean LL quantum
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wire is not renormalized by the electron–electron interactions when the reservoirs (leads)
are taken into account because of the well-known phenomenon of Andreev-type reflection
occurring at the contact between an LL quantum wire and a non-interacting reservoir [19].

In this work, we study the ac dynamical transport properties for a homogenous interacting
quantum wire in the presence of both internal Rashba SOC and external magnetic field
simultaneously. When a longitudinal time-varying electric field is applied to the wire, in the LL
regime we use the bosonization technique and solve the equation of motion for the system in
Fourier space. It is found that in this case the spin and charge degrees of freedom are completely
coupled and can be characterized by four new different velocities. Within the linear response
theory, the dynamical ac (ω �= 0) conductivity of the system is generally an oscillation function
of the strengths of electron–electron interaction, Rashba SOC and Zeeman interaction as well
as the driving frequency and the measurement position in the wire. However, the modification
of the conductivity due to electron–electron interactions is more remarkable than that due to
SOC, while the effects of SOC and Zeeman splitting on the conductivity are very similar. The
spin-polarized conductivities for the system in the absence of Zeeman effect or SOC are also
discussed. The ratio of the spin-polarized conductivities σ↑/σ↓ is dependent on the electron–
electron interactions for the system without SOC, and the ratio becomes more different when
the electron–electron interactions are stronger, while it is independent of the electron–electron
interactions for the system without Zeeman splitting. To the best of our knowledge, some of
these phenomena have not been reported previously for the LL quantum wire system.

The rest of the paper is organized as follows. In section 2, we formulate the model
Hamiltonian in the bosonization form for an interacting quantum wire simultaneously with
an external longitudinal electric field applied and both Rashba SOC and Zeeman splitting, and
solve the equation of motion for the bosonic phase fields in Fourier space. Within the linear
response theory, the conductivity of the system is analytically calculated in section 3, and the
detailed results for the two limited cases without either Zeeman splitting or Rashba SOC are
demonstrated in two subsections, respectively. Some examples and the discussion of the results
are demonstrated in section 4. Finally, section 5 concludes the paper.

2. The Hamiltonian and bosonization

Consider the system consisting of an interacting 1D quantum wire with an applied longitudinal
electric field induced realized by an externally applied electromagnetic radiation in the
experiments. Assume that we have a system of length L with a boundary condition. In the 1D
quantum wire the electron is subjected to a Rashba SOC. Here we have taken the symmetric
centre of the quantum wire as the origin, and the growth direction of the heterostructure to be
the z-axis in our spatial coordinate system. The electron transport ballistically in the quantum
wire is along the longitudinal x-direction. A magnetic field B perpendicular to the quantum
wire is applied along the y-axis.

For a weak magnetic field, its coupling to the electron orbital can be neglected [14] if
the low-lying excitation is considered, so we only keep the Zeeman Hamiltonian term with
respect to the magnetic field. Assuming δvR ∼ δvB � vF, the linearized noninteracting
electron Hamiltonian of the quantum wire with both Rashba SOC and Zeeman splitting is
given by [9, 10, 14]

H0 = −ih̄
∫ ∑

γ,s

vs
γ ψ

+
γ s∂xψγ s dx . (1)

The operators ψγ s (γ = L,R; s = ↓,↑) annihilate spin-down (↓) and spin-up (↑) electrons
near the left (L) and right (R) Fermi points. In what follows, the indices γ and s take the values
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−1 (1) for L (R) and ↓ (↑), respectively. And vs
γ = γ vF − 1

2 sδvR + 1
2γ sδvB are four different

sound velocities. Here vF is the bare Fermi velocity of noninteracting right and left movers,
δvR = 2α/h̄ (α is the strength of Rashba SOC) and δvB = g′μB B/kF (B is the magnitude of
magnetic field, g′ is the Lande factor, and μB is the Bohr magneton, respectively). Equation (1)
shows clearly that the Rashba term splits the bands horizontally and makes the electron Fermi
velocities become different for different directions of motion, while the Zeeman term splits
the bands vertically and makes the electron Fermi velocities become different for different
directions of spin. Using the bosonization technique [20] in terms of

ψ+
γ s∂xψγ s = iγ

(
γ ∂xϑs − 
s

h̄

2

)2

, (2)

we can derive the Hamiltonian (1) as

H0 = h̄vF

2

∫
dx

[
(∂xϑ↑)2 +

(

↑
h̄

)2

+ (∂xϑ↓)2 +
(

↓
h̄

)2]

− h̄

2
δvB

∫
dx

[
(∂xϑ↓)2 +

(

↓
h̄

)2

− (∂xϑ↑)2 −
(

↑
h̄

)2]

+ δvR

2

∫
dx [
↑(∂xϑ↑)−
↓(∂xϑ↓)], (3)

where ϑ↑/↓ is the phase field for spin-up/down electrons and 
↑/↓ is the corresponding
conjugate momentum. With the transformation

ϑρ = ϑ↑ + ϑ↓√
2

, ϑσ = ϑ↑ − ϑ↓√
2

, 
ρ = 
↑ +
↓√
2

, 
σ = 
↑ −
↓√
2

, (4)

we can reduce equation (3) into

H0 = h̄vF

2

∫
dx

[
(∂xϑρ)

2 +
(

ρ

h̄

)2

+ (∂xϑσ )
2 +

(

σ

h̄

)2]

+ h̄

2
δvB

∫
dx

[
(∂xϑσ )(∂xϑρ)+ 1

h̄2

ρ
σ

]

+ δvR

2

∫
dx [
σ(∂xϑρ)+
ρ(∂xϑσ )], (5)

where ϑρ and ϑσ can be considered as the phase field corresponding to the charge degree
and the spin degree of freedom, respectively, and 
ρ and 
σ are the corresponding conjugate
momenta.

Next, the short-ranged electron–electron interactions in the wire give a term to the
Hamiltonian

Hint = V (q = 0)

2π

∫
dx (∂xϑρ)

2, (6)

where V (q = 0) is the electron–electron interaction potential. In this Hamiltonian we have
neglected the Umklapp scattering, which is not relevant in the quantum wires formed in a
semiconductor heterostructure.

Finally, we consider the Hamiltonian term of a longitudinal electric field applied to the
quantum wire. We use the method of describing the application of an external bias voltage [19].
With the electron charge −e, the coupling to an external time-dependent potential UR(t) yields
a term in the Hamiltonian as [17]

Hac = −e
∫

dx ρ(x)UR(x, t) =
√

2

π
e
∫

dx ∂xUR(x, t)ϑρ, (7)
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where UR(x, t) is the chemical potential of the right-moving electrons, and ρ(x, t) =√
2
π
∂xϑρ(x, t) is the charge density in bosonization presentation. By virtue of the relation

∂xUR(x, t) = −E(x, t), equation (7) can be expressed as

Hac = −
√

2

π
e
∫

dx E(x, t)ϑρ(x, t), (8)

where E(x, t) is the externally applied electric field.
Combining equations (5), (6) and (8), we finally obtain the total bosonized Hamiltonian

for the system:

H = h̄

2

∫
dx

[
vρ

g
(∂xϑρ)

2 + vF

(

ρ

h̄

)2]
+ h̄

2

∫
dx

[
vσ (∂xϑσ )

2 + vσ

(

σ

h̄

)2]

+ h̄

2
δvB

∫
dx

[
(∂xϑσ )(∂xϑρ)+ 1

h̄2 (
ρ
σ )

]

+ h̄

2
δvR

∫
dx

[(

σ

h̄

)
(∂xϑρ)+

(

ρ

h̄

)
(∂xϑσ )

]

−
√

2

π
e
∫

dx E(x, t)ϑρ(x, t), (9)

where vρ,σ are the propagation velocities of the charge and spin collective modes of the
decoupled model (δvB = δvR = 0, or B = α = 0) and the parameter g is the strength of
the electron–electron interactions, which is defined as 1/g2 = 1 + V (q = 0)/h̄πvF with vF the
non-interacting fermion velocity of the system; non-interacting fermions corresponds to g = 1
and repulsive interaction corresponds to g < 1. The velocities vρ,σ have been obtained as
function of g and vF in [20] as vρ = vF/g and vσ = vF for the decoupled model.

Further, the action functional of the coupled system can be written in terms of the phase
fields ϑρ(x, t) and ϑσ (x, t) as

S = h̄

2

∫
dt

∫
dx

[
1

gvρ
(∂tϑρ)

2 − vρ

g
(∂xϑρ)

2

]
+ h̄

2

∫
dt

∫
dx

[
1

vσ
(∂tϑσ )

2 − vσ (∂xϑσ )
2

]

− h̄

2
δvB

∫
dx

[
(∂xϑσ )(∂xϑρ)+ 1

(vF)2
(∂tϑρ)(∂tϑσ )

]

− h̄

2

δvR

vF

∫
dt

∫
dx[(∂tϑσ )(∂xϑρ)+ (∂tϑρ)(∂xϑσ )]

+
√

2

π
e
∫

dx E(x, t)ϑρ(x, t). (10)

Note that in our system the time derivative of the field is not proportional to the conjugate
canonical momentum, but is a linear combination of the canonical momentum (including
charge canonical momenta and spin canonical momenta) and the gradient of the field. However,
after omitting the second order of the shifts from the spin–orbit or the Zeeman term and the
product between them, we find that the extra charge or spin canonical momentum and the
gradient of the field produce the same terms in the first line of equation (9), and the first term
(
ρ∂tϑρ + 
σ∂tϑσ ) of the Lagrangian L = ∫

dx (
ρ∂tϑρ + 
σ∂tϑσ ) − H , which finally
mean that the extra charge or spin canonical momentum and the gradient of the field do not
have an effect on the action functional of the coupled system. Therefore, by minimizing the
action (10) we obtain its associated equations of motion for the phase fields:

h̄

gvρ
∂2

t ϑρ − h̄vρ
g
∂2

xϑρ − h̄
δvR

vF
∂t∂xϑσ − h̄

2
δvB∂

2
xϑσ − h̄

2

δvB

vF
2
∂2

t ϑσ +
√

2

π
eE(x, t) = 0, (11)

5
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h̄

vσ
∂2

t ϑσ − h̄vσ ∂
2
xϑσ − h̄

δvR

vF
∂t∂xϑρ − h̄

2
δvB∂

2
xϑρ − h̄

2

δvB

vF
2
∂2

t ϑρ = 0. (12)

Applying the Fourier transformation

ϑ(x, t) = 1

(2π)2

∫
dq

∫
dω ϑ(q, ω)e−iqx+iωt (13)

to equations (11) and (12), we have the solution for the phase fields:

ϑρ(q, ω) =
√

2

π

evF

h̄

E(q, ω)

(ω2 − v2
ρq2)− (δvRqω− 1

2 δvBvFq2− 1
2
δvB
vF
ω2)2

ω2−v2
σ q2

, (14)

ϑσ (q, ω) = −
√

2

π

evF

h̄

(δvRqω− 1
2δvBvFq2 − 1

2
δvB
vF
ω2)E(q, ω)

(ω2 − v2
ρq2)(ω2 − v2

σq2)− (δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)2

. (15)

3. Conductivity of the system

The current operator can be defined by using the 1D continuity equation ∂x jρ(x, t) =
e∂tρ(x, t). Then we have the charge current

jρ(x, t) =
√

2

π
e∂tϑρ(x, t). (16)

Therefore, using solution (14) for ϑρ(q, ω), we obtain the explicit expression for the charge
current operator:

jρ(q, ω) = ie2vF

h̄π

2ω(ω2 − v2
σq2)E(q, ω)

(ω2 − v2
ρq2)(ω2 − v2

σq2)− (δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)2

. (17)

The charge current operator is written further as

jρ(q, ω) = ie2vF

h̄π

iE(q, ω)

1 − δv2
B

4v2
F

2ω(ω2 − v2
σq2)

(ω + u1q)(ω + u2q)(ω + u3q)(ω + u4q)
, (18)

where u1,2,3,4 are the velocities of four independent branches of the chiral excitations, and they
are all related to g, δvR and δvB [14]. Since the linear response is exact for an ideal LL, the
external electric field has to be used for the conductivity calculation [18], i.e.,

jρ(q, ω) = σ(q, ω)E(q, ω). (19)

Therefore, combining equation (17) with (19), we obtain the nonlocal charge conductivity:

σρ(q, ω) = ie2vF

h̄π

2ω(ω2 − v2
σq2)

(ω2 − v2
ρq2)(ω2 − v2

σ q2)− (δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)2

. (20)

On the other hand, the bosonic phase field ϑσ is related to the spin current operator through

jσ =
√

2

π
e∂tϑσ . (21)

Combing equations (15) and (21), the spin current operator can be expressed as

jσ (q, ω) = ie2vF

h̄π

2ω(δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)E(q, ω)

(ω2 − v2
ρq2)(ω2 − v2

σq2)− (δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)2

. (22)

6
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Therefore, using the linear response relation (19), we can also obtain the spin conductivity:

σσ (q, ω) = ie2vF

h̄π

2ω(δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)

(ω2 − v2
ρq2)(ω2 − v2

σq2)− (δvRqω − 1
2δvBvFq2 − 1

2
δvB
vF
ω2)2

(23)

which is also a function of g, α, B , ω and q .
Next, for understanding the transport property of the system in more detail, we go further

for the two limited cases of B = 0 or α = 0, respectively, in the following subsections.

3.1. The conductivity with Rashba SOC

Consider an LL quantum wire submitted to Rashba SOC without a Zeeman splitting, i.e., in
the absence of external magnetic field (B = 0 or δvB = 0). In this case the expression of the
current operator equation (17) is reduced to

jρ(q, ω) = ie2vF

h̄π

2ω(ω2 − v2
σq2)E(q, ω)

(ω2 − u2
1q2)(ω2 − u2

2q2)
, (24)

where

u2
1,2 = δv2

R + v2
ρ + v2

σ

2
±

√
(δv2

R + v2
ρ + v2

σ )
2 − 4v2

ρv
2
σ

2
(25)

are the propagation velocities of coupled collective modes in which the subscript 1/2
corresponds to +/−. Furthermore, in the absence of SOC (α = 0 or δvR = 0), we simply have
u1,2 = vρ,σ which correspond to the velocities for the special case of spin-charge separation in
an LL quantum wire [16]. Moreover, equation (24) can be rewritten as

jρ(q, ω) = ie2vF E(q, ω)

h̄π

[
u2

1 − v2
σ

u2
1 − u2

2

(
1

ω + u1q
+ 1

ω − u1q

)

− u2
2 − v2

σ

u2
1 − u2

2

(
1

ω + u2q
+ 1

ω − u2q

)]
. (26)

Therefore, combining equation (19) with (26), we obtain the nonlocal charge conductivity:

σρ(q, ω) = ie2vF

h̄π

[
u2

1 − v2
σ

u2
1 − u2

2

(
1

ω + u1q
+ 1

ω − u1q

)
− u2

2 − v2
σ

u2
1 − u2

2

(
1

ω + u2q
+ 1

ω − u2q

)]
,

(27)

which can be transformed into real space:

σρ(x, ω) = 2e2

h

[
(u2

1 − v2
σ )vF

(u2
1 − u2

2)u1
ei ωu1

|x| − (u2
2 − v2

σ )vF

(u2
1 − u2

2)u2
ei ωu2

|x|
]
. (28)

For convenience we use the abbreviation ξ = x/ l, in which ξ provides a dimensionless
measured position in the wire and l is the unit of length. Hence, equation (28) is reduced
to

σρ(x, ω) = 2e2

h

[
(u2

1 − v2
σ )vF

(u2
1 − u2

2)u1
ei ωl

u1
|ξ | − (u2

2 − v2
σ )vF

(u2
1 − u2

2)u2
ei ωl

u2
|ξ |

]
. (29)

This result implicates that the ac charge conductivity of a perfect LL quantum wire with Rashba
SOC is an oscillation function of the interaction parameter, SOC strength and the driving

7
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frequency as well as the measurement position in the wire. And in the limit of vanishing spin–
orbit and Zeeman coupling, the dc charge conductivity σρ = 2ge2/h, which is in agreement
with the conductivity found in previous studies [18].

In addition, in the case of an LL wire with Rashba SOC only, equation (22) for the spin
current operator is reduced to

jσ (q, ω) = ie2vF

h̄π

2ω(−δvRqω)E(q, ω)

(ω2 − u2
1q2)(ω2 − u2

2q2)
, (30)

and a similar calculation leads to the nonlocal spin conductivity for the system:

σσ (x, ω) = 2e2

h

δvRvF

u2
1 − u2

2

sgn(ξ)
(
ei ωl

u1
|ξ | − ei ωl

u2
|ξ |)
, (31)

where sgn(ξ) = −1 for ξ < 0 and 1 for ξ > 0. This expression for spin conductivity has a
less complicated dependence on the system parameters than that for charge conductivity (29).
However, the spin conductivity vanishes as δvR = 0 or ω = 0.

Furthermore, if we reverse the transformation (4) and define the total (charge) conductivity
σρ = σ↑ + σ↓ and the difference (spin) conductivity σσ = σ↑ − σ↓, then the combination of
equations (29) and (31) gives

σ↑ = e2

h

[(
(u2

1 − v2
σ )vF

(u2
1 − u2

2)u1
+ δvRvF

u2
1 − u2

2

sgn(ξ)

)
ei ωl

u1
|ξ |

−
(
(u2

2 − v2
σ )vF

(u2
1 − u2

2)u2
+ δvRvF

u2
1 − u2

2

sgn(ξ)

)
ei ωl

u2
|ξ |

]

ω→0=== e2

h

vF

u2
1 − u2

2

(
u2

1 − v2
σ

u1
− u2

2 − v2
σ

u2

)
(32)

and

σ↓ = e2

h

[(
(u2

1 − v2
σ )vF

(u2
1 − u2

2)u1
− δvRvF

u2
1 − u2

2

sgn(ξ)

)
ei ωl

u1
|ξ |

−
(
(u2

2 − v2
σ )vF

(u2
1 − u2

2)u2
− δvRvF

u2
1 − u2

2

sgn(ξ)

)
ei ωl

u2
|ξ |

]

ω→0=== e2

h

vF

u2
1 − u2

2

(
u2

1 − v2
σ

u1
− u2

2 − v2
σ

u2

)
(33)

for the conductivity of spin-up and spin-down electrons, respectively. From equations (32)
and (33), we can see that in the case of ω = 0 or without Rashba SOC (δvR = 0),
the conductivities for the two spin subbands are degenerate. Defining vF↑ = vF − δvR/2
(vF↓ = vF + δvR/2) as the Fermi velocity of the spin-up (spin-down) subband in the presence
of Rashba SOC, we can express δvR/vF as

δvR

vF
=

2( vF↓
vF↑ − 1)
vF↓
vF↑

+ 1
, (34)

in which vF↑ = vF↓ when δvR = 0.

3.2. The conductivity with Zeeman splitting

In this subsection we consider the case of the system with Zeeman splitting in the absence of
SOC, i.e., in the case of α = 0 or δvR = 0. In this case the charge current operator reads

jρ(q, ω) = ie2vF

h̄π

2ω(ω2 − v2
σq2)E(q, ω)

[1 − ( δvB
2vF
)2](ω2 − u2

1q2)(ω2 − u2
2q2)

, (35)

8



J. Phys.: Condens. Matter 19 (2007) 136215 F Cheng and G Zhou

where

u2
1,2 = v2

ρ + v2
σ + δv2

B
2

2[1 − ( δvB
2vF
)2] ±

√√√√(
v2
ρ + v2

σ + δv2
B

2

2[1 − ( δvB
2vF
)2]

)2

− v2
ρv

2
σ − δv2

Bv
2
F

4

1 − ( δvB
2vF
)2

(36)

are the propagation velocities of collective modes. Again, when δvB = 0, they are also reduced
to the velocities for the spin-charge separated system u1,2 = vρ,σ [16, 19].

Additionally, through the same procedures as above, we obtain the result for the nonlocal
charge conductivity:

σρ(q, ω) = ie2vF

h̄π

1

1 − ( δvB
2vF
)2

[
u2

1 − v2
σ

u2
1 − u2

2

(
1

ω + u1q
+ 1

ω − u1q

)

− u2
2 − v2

σ

u2
1 − u2

2

(
1

ω + u2q
+ 1

ω − u2q

)]
, (37)

which can be transformed into real space:

σρ(x, ω) = 2e2

h

1

1 − ( δvB
2vF
)2

[
(u2

1 − v2
σ )vF

(u2
1 − u2

2)u1
ei ωl

u1
|ξ | − (u2

2 − v2
σ )vF

(u2
1 − u2

2)u2
ei ωl

u2
|ξ |

]
. (38)

From this expression we can see that the ac conductivity of a perfect LL with only Zeeman
splitting is also an oscillation function of the interaction parameter, magnetic field intensity and
the driving frequency as well as the measurement position in the wire.

Accordingly, using the same method as above, the spin conductivity for the LL wire with
only Zeeman splitting is obtained as

σσ (x, ω) = 2e2

h

δvB
2vF

1 − ( δvB
2vF
)2

[
(u2

1 + v2
F)vF

(u2
1 − u2

2)u1
ei ωl

u1
|ξ | − (u2

2 + v2
F)vF

(u2
1 − u2

2)u2
ei ωl

u2
|ξ |

]
. (39)

We also see that as δvB = 0, the spin conductivity vanishes. Under the same definition of the
total (charge) conductivity σρ = σ↑ + σ↓ and the difference (spin) conductivity σσ = σ↑ − σ↓
with the combination of equations (38) and (39), we can obtain

σ↑ = e2

h

1

1 − ( δvB
2vF
)2

vF

u2
1 − u2

2

[(
u2

1 − v2
σ

u1
+ δvB

2vF

u2
1 + v2

F

u1

)
ei ωl

u1
|ξ |

−
(

u2
2 − v2

σ

u2
+ δvB

2vF

u2
2 + v2

F

u2

)
ei ωl

u2
|ξ |

]

ω→0=== e2

h

1

1 − ( δvB
2vF
)2

vF

u2
1 − u2

2

[(
u2

1 − v2
σ

u1
+ δvB

2vF

u2
1 + v2

F

u1

)

−
(

u2
2 − v2

σ

u2
+ δvB

2vF

u2
2 + v2

F

u2

)]
(40)

and

σ↓ = e2

h

1

1 − ( δvB
2vF
)2

vF

u2
1 − u2

2

[(
u2

1 − v2
σ

u1
− δvB

2vF

u2
1 + v2

F

u1

)
ei ωl

u1
|ξ |

−
(

u2
2 − v2

σ

u2
− δvB

2vF

u2
2 + v2

F

u2

)
ei ωl

u2
|ξ |

]

9
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Figure 1. The plotted propagation velocities of the collective modes u1,2 (in units of vF) as a
function of the SOC strength δvR/vF in the absence of Zeeman effect, where the solid lines for
g = 1, the dashed lines for g = 0.4 and the dotted lines for g = 0.2, respectively.

ω→0=== e2

h

1

1 − ( δvB
2vF
)2

vF

u2
1 − u2

2

[(
u2

1 − v2
σ

u1
− δvB

2vF

u2
1 + v2

F

u1

)

−
(

u2
2 − v2

σ

u2
− δvB

2vF

u2
2 + v2

F

u2

)]
(41)

for the conductivities of spin-up and spin-down electrons, respectively. We also see that without
Zeeman splitting (δvB = 0) the conductivities for the two spin subbands are degenerate. Again,
defining vF↑ = vF + δvB/2 (vF↓ = vF − δvB/2) as the Fermi velocity of the up (down) spin
subband in a magnetic field B , we can also express δvB/vF as

δvB

vF
=

2( vF↑
vF↓ − 1)
vF↑
vF↓

+ 1
, (42)

which has the similar form as equation (34).

4. Results and discussions

There are six calculated figures presented in this paper, in which figures 1–3 are plotted for the
system with Rashba SOC in the absence of an external magnetic field, whereas figures 4–6 are
plotted for the system with Zeeman splitting in the absence of Rashba SOC.

The dimensionless velocities of the bosonic excitation u1(u2) (in units of vF) as a function
of δvR/vF calculated according to equation (25) in the absence of Zeeman splitting for three
different electron–electron interaction strengths of g = 0.2 (dotted line), 0.4 (dashed line) and
1 (solid line), respectively, are shown in figure 1. We can see that when the interaction is turned
on (g < 1) and as δvR/vF (proportional to the Rashba SOC strength) increases u1/vF increases,
while u2/vF decreases slightly. However, for the stronger interaction the changes of u1/vF and
u2/vF seem less obvious. For a fixed value of δvR/vF, the stronger the interaction is, the larger
the velocities of the bosonic excitation u1(u2) are. And in the limited case of δvR/vF = 0

10
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Figure 2. The plotted Re σρ(x, ω) (in units of e2/h) as a function of ωl/vF in the absence of
Zeeman effect (a) with fixed g = 0.25 and δvR/vF = 0.5 where the solid line is for ξ = ±0.4, the
dashed line for ξ = ±0.25 and the dotted line for ξ = 0; (b) with fixed ξ = 0.25 and δvR/vF = 0.5
where the solid line is for g = 1, the dashed line for g = 0.75 and the dotted line for g = 0.25; and
(c) with fixed ξ = 0.25 and g = 0.75 where the solid line is for δvR/vF = 0.75, the dashed line for
δvR/vF = 0.5 and the dotted line for δvR/vF = 0, respectively.

Figure 3. The plotted spin-polarized charge conductivity σ↑(σ↓) (in units of e2/h) as a function
of the ratio vF↓/vF↑ in the absence of Zeeman effect, where the solid lines correspond to g = 0.75
and the dashed lines to g = 0.4, respectively.

(i.e., in the absence of SOC), u1/vF is equal to 1/g, whereas u2/vF is equal to 1. This is the
known result that can be found in [20].

Figure 2 illustrates the real part of the charge conductivity Re σρ(x, ω) (in units of e2/h) as
a function of ωl/vF calculated according to equation (29) in the absence of Zeeman splitting.
For the system with fixed g = 0.25 and δvR/vF = 0.5, figure 2(a) shows the dependence

11
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Figure 4. The plotted propagation velocities of the collective modes u1,2 (in units of vF) as a
function of the Zeeman strength δvB/vF in the absence of SOC, where the solid lines correspond to
g = 1, the dashed lines to g = 0.4 and the dotted lines to g = 0.2, respectively.

of three different measurement positions ξ = ±0.4 (solid line), ±0.25 (dashed line) and
0 (dotted line) on the conductivity, respectively. In the centre of the wire (ξ = 0) the
conductivity is a constant value regardless of ωl/vF. However, the further off the wire centre
the position, the quicker the change of the conductivity is. Notice that the conductivity only
depends on the absolute value |ξ |. The influences of the electron–electron interaction g and
the Rashba strength δvR/vF on Re σρ(x, ω) for the system are shown in figures 2(b) and (c),
respectively. For the system with fixed ξ = 0.25 and δvR/vF = 0.5, figures 2(b) shows the
dependence of three different interaction strengths g = 1 (solid line), 0.75 (dashed line) and
0.25 (dotted line) on the conductivity, respectively. When the electron–electron interaction
parameter g is larger, the variation of Reσρ(x, ω) is faster. If the compositive vibration has
a periodicity, then the stronger the interaction is, the longer the period of the oscillation is.
The period of the oscillation is the least common multiple of 2πu1/(vF|ξ |) and 2πu2/(vF|ξ |),
and the measured position is fixed at ξ = 0.25, so the period of the oscillation is totally
determined by u1 and u2. For the system with fixed g = 0.75 and ξ = 0.25, figure 2(c)
shows the dependence of three different Rashba strengths δvR/vF = 0.75 (solid line), 0.5
(dashed line) and 0 (dotted line) on the conductivity, respectively. Comparing figure 2(c)
with 2(b), we can find that the dependence of Re σρ(x, ω) on g at fixed δvR/vF is very
similar to that on δvR/vF at fixed g, and they exhibit the same tendency as a function of
ωl/vF. But it is obvious that the modification due to the electron–electron interactions is
remarkable. Moreover, from figures 2(b) and (c), we can see that the dc (ω = 0) charge
conductivities of the system with different electron–electron interactions and Rashba strengths
are different constant values, which can be obtained analytically from equation (29) with
limω→0 σρ(x, ω) = 2e2/h[(u2

1 − v2
σ )vF/u1/(u2

1 − u2
2) − (u2

2 − v2
σ )vF/u2/(u2

1 − u2
2)]. Here

u1 and u2 are dependent on both g and α (see figure 1).
In figure 3 we show the dependence of spin-polarized dc conductivity σ↑(σ↓) on the ratio

vF↓/vF↑ (also proportional to the Rashba SOC strength) in the absence of Zeeman splitting
for the two different interaction strengths, where the solid lines correspond to g = 0.75 and

12
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Figure 5. The plotted Re σρ(x, ω) (in units of e2/h) as a function of ωl/vF in the absence of SOC
(a) with fixed g = 0.25 and δvB/vF = 0.5 where the solid line is for ξ = ±0.4, the dashed line
for ξ = ±0.25 and the dotted line for ξ = 0; (b) with fixed ξ = 0.25 and δvB/vF = 0.5 where
the solid line is for g = 1, the dashed line for g = 0.75 and the dotted line for g = 0.25; and (c)
with fixed ξ = 0.25 and g = 0.75 where the solid line is for δvB/vF = 0.75, the dashed line for
δvB/vF = 0.5 and the dotted line for δvB/vF = 0, respectively.

Figure 6. The plotted spin-polarized charge conductivity σ↑(σ↓) (in units of e2/h) as a function
of the ratio vF↑/vF↓ in the absence of SOC, where the solid lines correspond to g = 0.75 and the
dashed lines to g = 0.4, respectively.

the dashed lines to g = 0.4, respectively. The curves for σ↓ as a function of vF↓/vF↑ are the
same as those for σ↑, and this can be verified from equations (32) and (33). This result implies
that the dc conductivities of spin-up and spin-down electrons are degenerate in the absence
of a Zeeman effect. From figure 3 we can also see that the spin-polarized conductivities
σ↑(σ↓) are connected with the electron–electron interactions for any fixed value of vF↓/vF↑.

13
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The stronger the interactions the smaller the σ↑ (σ↓) produced, which shows that the repulsive
interaction suppresses the conductivity. Also, the less obvious is the increase of σ↑ (σ↓) as the
increase of ratio vF↓/vF↑, which shows that in the case of strong electron–electron interaction
the modification of vF↓/vF↑ on the conductivity is very little.

Figure 4 shows the dimensionless velocities of the bosonic excitations u1(u2)/vF versus
δvB/vF of the system calculated according to equation (36) in the absence of Rashba SOC for
three different interaction strengths of g = 1 (solid line), 0.4 (dashed line) and 0.2 (dotted
line). We also see that, with the increase of δvB/vF, u1/vF increases, while u2/vF decreases
slightly for all values of g < 1. But for the noninteracting case (g = 1) u2/vF decays more
rapidly as δvB/vF increases, and the stronger the interaction is, the slower the decay of u2/vF.
Figure 4 is very similar to figure 1, which makes clear that the virtual magnetic field induced by
an electric field perpendicular to the 2DEG yields a similar effect on the propagation velocities
of the collective modes as the magnetic field applied along the y-direction.

Figure 5 illustrates the real part of the charge conductivity Re σρ(x, ω) (in units of e2/h)
as a function of ωl/vF calculated according to equation (38) in the absence of Rashba SOC.
For the system with fixed g = 0.25 and δvB/vF = 0.5, figure 5(a) shows the dependence
of three different measurement positions ξ = ±0.4 (solid line), ±0.25 (dashed line) and 0
(dotted line) on the conductivity, respectively. Figure 5(b) shows the dependence of three
different interaction strengths g = 1 (solid line), 0.75 (dashed line) and 0.25 (dotted line)
on the conductivity for the system with fixed ξ = 0.25 and δvB/vF = 0.5. And for the
system with fixed g = 0.75 and ξ = 0.25, figure 5(c) shows the dependence of three different
magnetic strengths δvB/vF = 0.75 (solid line), 0.5 (dashed line) and 0 (dotted line) on the
conductivity, respectively. The variables and the scales in figure 5 are the same as in figure 2
except for replacing δvR/vF by δvB/vF. Figure 5 is very similar to figure 2. However, from
figure 5 we can see that the dc (ω = 0) charge conductivities of the system with different
electron–electron interactions or magnetic strengths are different constant values (figures 5(b)
and (c)), but with different measurement positions they are the same values (figure 5(a)). This is
because limω→0 σρ(x, ω) = 2e2/h(1/[1 − (δvB/(2vF))

2])[(u2
1 − v2

σ )vF/u1/(u2
1 − u2

2)− (u2
2 −

v2
σ )vF/u2/(u2

1 − u2
2)] where u1 and u2 are only dependent on both g and δvB (see figure 4).

These constant values are almost the product of Re σρ(x, ω = 0) in figure 2 and a factor
1/[1 − (δvB/2vF)

2], and this is also true in the case of ω �= 0. Comparing figure 5(c) with 5(b),
we can find that the dependence of Re σρ(x, ω) on g at fixed δvB/vF is very similar to that on
δvB/vF at fixed g, and they exhibit the same tendency as a function of ωl/vF. But it is obvious
that the modification due to the electron–electron interactions is more remarkable, which is
the same as the conclusion reached by comparing figure 2(c) with 2(b). Moreover, comparing
figure 5(c) with 2(c), we can find that the dependence of Reσρ(x, ω) on δvB/vF is very similar
to that on δvR/vF in the case of fixed g, and they exhibit the same tendency as a function of
ωl/vF. This means that the effects of Rashba SOC and Zeeman splitting on the conductivity
are very similar.

In figure 6 we show how the spin-polarized dc conductivities σ↑ and σ↓ evolve as the ratio
of vF↑/vF↓ is varied for the two different interaction strengths, where the solid lines correspond
to g = 0.75 and the dashed lines to g = 0.4, respectively. It is also demonstrated that the
increase of ratio vF↑/vF↓ pushes σ↑ and σ↓ away from each other, and one accelerates while
the other slows down. This result is in agreement with [9]. In contrast to the Rashba SOC case
as shown in figure 3, the ratio of the spin-polarized conductivities σ↑/σ↓ is dependent on the
electron–electron interactions and the ratio vF↑/vF↓. This is because the channel with a larger
electron velocity has a larger transmission coefficient for fixed electron–electron interaction
strength and vF↓/vF↑, and the difference of the transmission coefficient between channels
becomes larger with the increase of vF↓/vF↑ or of electron–electron interaction strength.
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Finally, in II–VI semiconductors the Rashba SOC is expected to be larger than the
Dresselhaus coupling, so we can neglect the Dresselhaus SOC [8]. At low temperatures, the
2DEG formed in II–VI semiconductor heterostructures is restricted by a transverse confining
potential, so we have a sufficiently long narrow quantum wire. A weak magnetic field B
perpendicular to the quantum wire is applied along y-axis, which is turned on or turned off
according to the requirement. A longitudinally polarized external electromagnetic field with
wavevector along the z-axis irradiates the quantum wire. For the aforementioned reasons,
the present experimental condition may be reachable [2–4]. Furthermore, in this article we
have only considered the case of infinite-length LL. This situation is important for a simple
theoretical understanding, although it may be relevant to experiments where the leads always
dominate the results. The conductivity of a finite-length LL coupled to leads may have different
frequency and amplitude dependence on the physical parameters of the system due to the
Andreev-type reflections [19]. The detailed calculation and discussion for the important role of
the Fermi liquid leads on the conductivity of the system will be given in our next work.

5. Conclusion

In conclusion, using a straightforward approach we have investigated theoretically the transport
properties through an interacting quantum wire in the presence of both Rashba SOC and
Zeeman splitting simultaneously in the LL regime. Using the bosonization technique, the
equations of motion of bosonic phase fields for the system with a longitudinal electric field
is established, and the solution is obtained by introducing a Fourier transformation in which
the spin and charge degrees of freedom are completely coupled and characterized by four new
different velocities. Within the linear response theory, it is found that the ac conductivity of
an LL wire in the presence of Rashba SOC and Zeeman splitting is generally an oscillation
function of the interaction strength g, Rashba SOC strength α, Zeeman interaction strength B
and the driving frequency ω as well as the measurement position x in the wire.

For an LL wire with only Rashba SOC, the real part of the conductivity Re σρ as a
function of the electron–electron interaction or Rashba SOC strength exhibits similar decay
tendencies with the increase of frequency ωl/vF. But the modification due to the electron–
electron interactions is more remarkable than that due to Rashba SOC. On the other hand, for a
LL wire only with only Zeeman splitting, Reσρ is a function of the frequency ωl/vF; the same
curves hold if one replaces δvR/vF by δvB/vF, but one has to multiply all values of Reσρ by a
factor of 1/[1 − (δvB/2vF)

2].
For an LL with only Rashba SOC, when we study how σ↑(σ↓) evolve as the ratio vF↓/vF↑

is varied, we find that the curves for σ↓ as a function of vF↓/vF↑ are the same as those for σ↑.
But for an LL with only Zeeman splitting, we find that the increase of the ratio vF↑/vF↓ pushes
σ↑ and σ↓ away from each other, which is consistent with the result of the previous studies [9]
for the same system. In contrast to the SOC case, the ratio of the spin-polarized conductivities
σ↑/σ↓ is dependent on the electron–electron interactions.

Further investigations are worth being done for the higher conductivity corrections, in the
presence of impurity, or with realistic Coulomb interactions.
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